Ядро является самым крупным клеточным органоидом. Но в живых клетках при рассматривании в световой микроскоп ядро обычно плохо видно, так как оно преломляет свет лишь немногим более, чем окружающая цитоплазма.

Размеры ядра очень изменчивы и зависят от вида растения, типа, возраста и состояния клетки. Так, у грибов ядра обычно мелкие, диаметром порядка 0,5—1,0 мк. У вегетативных клеток высших растений размеры ядра колеблются в среднем от 5 до 25 мк, причем у однодольных ядра обычно крупнее, чем у двудольных, и у голосеменных— крупнее, чем у покрытосеменных. Наиболее крупные ядра (до 500 мк) встречаются у половых клеток голосеменных растений.

Форма ядра при рассматривании его в световой микроскоп чаще всего шаровидная, например у эмбриональных клеток, но может меняться в широких пределах в зависимости от формы клетки и состояния цитоплазмы. У длинных узких клеток ядра обычно сплюснутые, чечевицеобразные или вытянутые, веретенообразные. Форма ядра может изменяться под влиянием движения цитоплазмы (деформация).

Исследования в электронном микроскопе показали, что довольно часто ядро принимает амебовидную форму; в нем образуются неправильные лопасти различной длины или довольно сильные углубления. В этих углублениях могут скапливаться и митохондрии. Такая «разветвленность» ядра ведет к увеличению ядерной поверхности, что имеет большое значение для повышения интенсивности взаимодействия между ядром и цитоплазмой.

В отличие от других органоидов, число которых в клетке обычно довольно велико, живая клетка, как правило, имеет только одно ядро. Однако клетки грибницы многих высших грибов двуядерны, многоядерны клетки некоторых водорослей и низших грибов. У высших растений сильно вытянутые клетки, образующие лубяные волокна, также содержат по нескольку ядер. Часто двуядерными бывают клетки так называемого выстилающего слоя пыльников. Единственным типом клеток, которые остаются живыми и во взрослом состоянии не содержат ядра, являются клетки, проводящие пластические вещества (ситовидные трубки), но живут эти клетки очень недолго, обычно один вегетационный период.

 

Клетка из молодого листочка околоцветника дрока испанского при небольшом увеличении электронного микроскопа

Клетка из молодого листочка околоцветника дрока испанского при небольшом увеличении электронного микроскопа (по Нугаред, 1964).
Срез прошел не в центре клетки, поэтому видна тлько часть центральной вакуоли. Видно углубление в ядре, в которое заходит фрагмент эндоплазматической сети:
1 - ядро,
2 - ядерная оболочка,
3 - поры в ядерной оболочке,
4 - ядрышко,
5 - оболочка клетки,
6 - плазмодесма,
7 - плазмалемма,
8 - пиноцитозные пузырьки,
9 - тонопласт,
10 - вакуоля,
11 - гиалоплазма,
12 - эндоплазматическая сеть,
13 - диктиосома,
14 - митохондрия,
15 - хлоропласт,
16 - граны хлоропласта,
17 - липофильная глобула в хлоропласте,
18 - крахмальное зерно

В молодых клетках ядро обычно занимает центральное положение. Когда клетка дифференцируется и в ней образуются большие вакуоли, ядро вместе с цитоплазмой отодвигается к периферии клетки, к клеточной оболочке, не соприкасаясь непосредственно с вакуолью. Иногда ядро остается в центре клетки и окружено скоплением цитоплазмы (так называемым ядерным кармашком).

Ядерный кармашек связан с постенным слоем цитоплазматическими тяжами, пересекающими клетку. В некоторых случаях положение ядра может меняться, что связано с его активным передвижением в наиболее деятельные участки клетки. Как показала микрокиносъемка, ядро в некоторых клетках может находиться в состоянии беспрерывного маятникообразного или вращательного движения, возникающего, возможно, вследствие периодического выталкивания синтезируемых веществ из. ядра в цитоплазму.

В тех случаях, когда ядро заметно в световом микроскопе, оно имеет вид эластичного заполненного пузырька, отделенного от окружающей его цитоплазмы чрезвычайно тонкой и едва различимой ядерной оболочкой. Внутри ядра можно обнаружить 1—3 (реже более) мелких округлых телец, сильнее преломляющих свет, — ядрышек. Остальная часть ядра заполнена прозрачной однородной массой консистенции золя или геля, кажущейся бесструктурной. Эта картина, однако, не всегда одинакова. В отдельных случаях в гомогенном ядерном содержимом, так называемом ядерном соке (кариолимфе, или нуклеоплазме), можно заметить многочисленные едва различимые точки, придающие содержимому зернистый вид. При наблюдении в фазовом контрасте или в ультрафиолетовом свете оказывается, что эти зернышки образуют неправильную сеть.

Вещества, образующие зернышки, обладают способностью поглощать некоторые красители, поэтому они получили название хроматина, а сама сеть — хроматиновой сети. Предполагают, что причиной обычной гомогенности ядерного содержимого является сильная гидратация (насыщенность водой) веществ хроматиновой сети, вследствие чего показатель преломления этих веществ и веществ ядерного сока оказывается одинаковым, и хроматиновая сеть становится неразличимой. При фиксации, вызывающей обезвоживание и свертывание ядерных белков, и последующей окраске основными ядерными красками обычно у всех клеток выявляются структуры ядра. При этом хроматин окрашивается наиболее сильно. В некоторых клетках он равномерно распределен по ядру в виде тончайшей сеточки (лук), в других он собран в отдельные глыбки — хромоцентры, прикрепленные к петлям более слабо окрашивающейся сети (горох, кукуруза). В клетках третьего типа ядерная сеть выражена слабо, а хромоцентры более крупные и имеют сложные очертания. Наконец, в некоторых клетках сеточка совсем незаметна, и хроматин имеет вид немногочисленных довольно крупных телец.

 

Типы структуры неделящегося ядра после фиксации и окраски

Типы структуры неделящегося ядра после фиксации и окраски (по Дейсону, 1962):
А - сетчатая структура без хромоцентров (лук);
Б - сетчатая структура с хромоцентрами (бобы);
В - поусетчатая структура со сложными хромоцентрами (бриония);
Г - несетчатая структура с прохромосомами:
1 - ядрышко

Предполагают, что хроматиновая сеть и хромоцентры представляют собой структурные видоизменения хромосом, становящихся заметными при переходе клетки и ядра к делению. В неделящемся ядре хромосомы сильно гидратированы и деопирализованы и образуют в ядерном соке почти невидимую сеть. Нити хроматина представляют собой хромосомы в состоянии раскручивания и набухания, а хромоцентры — более концентрированные зоны, в которых упаковка и закручивание хромосомного материала сохраняются и в неделящемся ядре. Такое диффузное распределение хромосомного материала наилучшим образом соответствует важнейшей роли хромосом в жизни клетки.

Благодаря способности поглощать основные красители, фиксированное и окрашенное ядро становится хорошо заметным в клетке. Ядрышко также хорошо окрашивается, но иначе, чем хроматиновая сеть. Это связано с тем, что оно имеет другой химический состав. Оболочка ядра и ядерный сок не окрашиваются.

Как и цитоплазма, ядро представляет собой коллоидную систему, но более вязкой консистенции. По химическому составу оно заметно отличается от цитоплазмы, причем отдельные компоненты ядра химически различны. Наиболее важными в составе ядра являются нуклеиновые кислоты: дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК), причем первая в ядре преобладает и обычно не содержится в цитоплазме. Нуклеиновые кислоты — высокополимерные соединения, в состав молекул которых входят особый сахар, фосфорная кислота и азотистые основания. ДНК отличается от РНК типом сахара, атомным весом и строением молекул.

Вторым важнейшим типом соединений ядра являются белки — основные белки (протамины и гистоны) и негистоновые кислые белки, в том числе различные ферменты. В состав ядра входят также липоиды и некоторые электролиты (ионы кальция и магния). Молекулы ДНК в ядре обычно тесно связаны с гистонами, образуя так называемые нуклеогистоны. Количество нуклеогистонов в неделящейся клетке удивительно постоянно. Они являются важнейшей составной частью хроматина и не встречаются в других частях ядра. В состав хроматина входят также негистоновые кислые белки и некоторое количество РНК. Ядрышко — основной носитель РНК в ядре и не содержит ДНК. Количество РНК в отличие от ДНК очень варьирует в ядрах разных клеток одного растения и даже в одной клетке в зависимости от ее состояния. Составляющая ядрышко РНК тесно связана с синтезом белка в клетке и поэтому изменение в содержании РНК часто обусловлено изменением интенсивности синтеза белка. В состав ядрышка входят также фосфорсодержащие белки. Ядерный сок, как предполагают, состоит в основном из растворимого белка (глобулина). В строении ядерной оболочки принимают участие белки и липоиды.

Применение электронного микроскопа для изучения этого важнейшего органоида пока не принесло крупных успехов. Поэтому проблема тонкого строения ядра еще очень далека от разрешения. Эти неудачи, вероятно, связаны с тем, что структуры ядра как центрального органоида имеют более тонкое и нежное строение и поэтому требуют особых методов фиксации и приготовления препаратов.

Ядерная оболочка — наиболее исследованный в электронном микроскопе компонент ядра. Она имеет субмикроскопическую толщину и поэтому не видна в световой микроскоп. То, что в световом микроскопе принимают за оболочку, представляет на самом деле лишь границу раздела двух различных по плотности фаз (цитоплазмы и ядерного содержимого), которая хорошо выявляется, вероятно, еще и потому, что периферические тяжи хроматина часто связаны с оболочкой. Ядерная оболочка на поперечном срезе имеет толщину около 300 Å и состоит из двух узких темных слоев — наружной и внутренней мембран, разделенных более широким светлым промежутком. Этот промежуток имеет изменчивую толщину и часто неправильные очертания, содержимое его обычно гомогенно, но иногда в нем наблюдается некоторая зернистость. Наружная мембрана оболочки часто бывает шероховатой из-за прикрепленных к ней рибосом. В общем мембраны ядерной оболочки очень напоминают мембраны цитоплазмы, хлоропластов и митохондрий и, по- видимому, имеют сходный с ними химический состав и строение.

Ядерная оболочка существенно отличается от оболочек других органоидов тем, что в ней всегда имеются так называемые поры. Состав и строение этих пор еще до конца не изучены, и взгляды разных ученых по этому вопросу противоречивы. Одни из них считают, что поры представляют собой настоящие округлые отверстия, по краям которых наружная и внутренняя мембраны сливаются, и в зоне этих отверстий гиалоплазма входит в непосредственный контакт с ядерным содержимым. Однако было обнаружено, что сами поры и участки цитоплазмы и ядерного содержимого, прилегающие к ним, содержат электронноплотный, темный материал. На тангентальном, т. е. сделанном параллельно поверхности, срезе поры имеют вид дисков диаметром обычно 300—500 Å, каждый из которых окружен темным кольцом. Эти данные дали другим ученым основание считать, что в порах имеется подобие трубочек, которые вставлены вертикально в отверстия ядерной оболочки, причем иногда в этих трубочках намечаются перегородки. В настоящее время более распространена вторая точка зрения, согласно которой поры не являются отверстиями.

Схема строения ядерной оболочки в элетронном микроскопе

Схема строения ядерной оболочки в элетронном микроскопе (по Афзелиусу, 1955)
А - срез; Б - объемное изображение: видны поры (1) и кольца (2); сторона, обращенная к цитоплазме, направлена вниз

Размеры и густота пор довольно изменчивы, например, в молодых клетках листа эти поры обычно крупнее и их больше, чем в клетках взрослого листа, но и у взрослых клеток их довольно много. Можно думать, что поры функционируют как своего рода шлюзовые ворота, через которые осуществляется обмен веществ ядра и цитоплазмы. Благодаря ядерной оболочке возможно существование особой внутриядерной среды, отличной от окружающей цитоплазмы. Избирательно проницаемые мембраны позволяют в известной степени контролировать эту среду, в которой действуют хромосомы и ядрышки. Хотя через поры могут свободно проходить крупные белковые молекулы и даже рибосомы, иногда ядерная оболочка оказывается для них непроницаемой.

Ядерная оболочка часто постоянно или временно связана с другими клеточными органоидами, особенно с эндоплазматической сетью цитоплазмы. В последнем случае наружная мембрана ядерной оболочки образует выросты, которые сливаются с мембранами эндоплазматической сети, в результате чего содержимое цистерн эндоплазматической сети сообщается с межмембранным промежутком ядерной оболочки. Хотя эти выросты лучше всего выражены у молодых клеток, они типичны и для взрослых клеток. Наличие выростов свидетельствует о физическом единстве между ядерной оболочкой и эндоплазматической сетью. В определенные периоды жизни клетки наблюдается тесный контакт между ядерной оболочкой и оболочкой митохондрий. Было высказано предположение, что ядерная оболочка дает выросты, из которых образуются пузырьки, превращающиеся затем в митохондрии и пропластиды.

Ядрышко в электронном микроскопе обычно видно в форме плотной массы, более темной, чем остальное ядерное содержимое, и состоящей из скопления округлых частиц диаметром около 150 Å. Иногда в ядрышке выявляются и микрофибриллы диаметром около 50 Å. Очертание ядрышка обычно округлое или овальное, иногда волнистое. Граница между ядрышком и окружающим ядерным соком выражена неотчетливо, так как оно не окружено особой мембраной и находится в непосредственном контакте с другими компонентами ядра. Ядерный сок часто проникает в содержимое ядрышка. Округлые частицы, составляющие основную массу ядрышка, имеют вид зерен и по размерам, форме и химическому составу (высокое содержание РНК) очень похожи на рибосомы цитоплазмы.

Предполагают, что ядрышко является местом активного синтеза РНК и белка, которые затем в виде рибосом ядрышка или каким-либо другим путем проходят через поры ядерной оболочки в цитоплазму и принимают участие в синтезе белков цитоплазмы. Поэтому ядрышко бывает особенно крупным в молодых, растущих клетках. Предполагают, что значительная часть РНК рибосом цитоплазмы имеет ядерное происхождение. В общем же тонкая структура ядрышка еще полностью не раскрыта.

В отличие от цитоплазмы и других органоидов ядро не содержит внутренних мембранных структур, и ядерное содержимое за исключением ядрышка плохо выявляется в электронном микроскопе. Хроматин на электронограммах обычно имеет вид более плотных зернистых масс неясных контуров и без ограничивающих мембран. Заметной правильности в распределении хроматинового материала в ядерном соке не наблюдается, лишь в отдельных местах скопления хроматина входят в тесный контакт с ядерной оболочкой. Субмикроскопическая структура хроматина почти совершенно не выяснена. Предполагают, что основным структурным элементом хроматина и хромосом являются микрофибриллы — нити диаметром порядка 100—250 Å и неопределенной длины, которые скручены в спираль и состоят из нуклеогистонов (соединений ДНК с белком).

Высказана гипотеза, согласно которой каждая микрофибрилла хроматина имеет трубчатую структуру и состоит из волокнистого осевого вещества, окруженного более плотным футляром. Ядерный сок в электронном микроскопе кажется почти бесструктурным и несколько более плотным, чем цитоплазма. В нем удалось увидеть лишь мелкие зернистые скопления нуклеопротеидного материала, беспорядочно распределенные между более крупными массами хроматина.

Функции ядра

Ядро — центральный органоид клетки. Если его удалить из клетки, то она отмирает. С другой стороны, одно ядро не может самостоятельно существовать без других органоидов, так как оно зависит от них в энергетическом отношении, получая от них энергию. Одна из важнейших функций ядра состоит в том, что оно передает в систему цитоплазмы ту информацию, которая определяет направление синтеза белков и других веществ в клетке.

Механизм передачи этой информации раскрыт совсем недавно и вкратце состоит в следующем. Молекулы ДНК ядра являются как бы шаблоном, в котором закодированы особенности молекул РНК. РНК, синтезированная в ядре, может временно накапливаться в ядрышке. Затем она переходит в цитоплазму, где связывается с рибосомами. Эта РНК и направляет синтез белка, осуществляемый рибосомами цитоплазмы. Благодаря этому, ядро как бы программирует физиологию, биохимию и процессы развития клетки. Во-вторых, ядро содержит хромосомы, в которых записана наследственная информация, позволяющая клетке выразить ее индивидуальность.

Иными словами, ядро является носителем основных наследственных признаков организма. Некоторые ученые приписывают ядру и структурообразовательную роль, например, образование митохондрий, мембран эндоплазматической сети и др.